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Abstract

As both electronic structure methods and the computers on which they are run become

increasingly complex, the task of producing robust, reliable, high-performance implemen-

tations of methods at a rapid pace becomes increasingly daunting. In this paper we present

an overview of the Tensor Contraction Engine (TCE), a unique effort to address issues of

both productivity and performance through automatic code generation. The TCE is de-

signed to take equations for many-body methods in a convenient high-level form and acts

like an optimizing compiler, producing an implementation tuned to the target computer

system and even to the specific chemical problem of interest. We provide examples to

illustrate the TCE approach, including the ability to target different parallel programming

models, and the effects of particular optimizations.

1 Introduction

Over roughly the last twenty-five years, coupled cluster (CC) and other many-body methods

have been developed into the dominant methodology for high-quality electronic structure cal-

culations, thanks to the significant efforts of Prof. Rodney J. Bartlett and his research collabora-

tors, as well as numerous other research groups. Starting from the simplest CCD method [1–3]

∗This paper is dedicated to Prof. Rodney J. Bartlett on the occasion of his 60th birthday.
†Author for correspondence: email: bernholdtde@ornl.gov
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through the recent implementation of CCSDTQP [4], these methods have grown to a level

of theoretical sophistication and computational complexity that could hardly have been imag-

ined when the first methods were published, and have come to represent enormous coding

tasks. Similarly, the breadth of methods has expanded from straightforward single-reference

CC methods to include a variety of multireference approaches [5–17], methods for excited

states and various properties [5, 18–30].

At the same time, computer hardware has grown orders of magnitude more powerful, help-

ing to deliver on the promise of applying many-body methods to “real” chemical problems and

synergistically spurring new scientific goals, new method development and new algorithms to

take advantage of the ever-increasing computational power. In addition to new algorithms for

“standard” methods [31, 32], new variations, such as “local” and atomic orbital (AO) based

implementations [33–36], and approaches based on resolution of the identity, density fitting,

and Cholesky decomposition [37, 38] are being developed in response to the size and physical

characteristics of the chemical systems now within reach of many-body methods.

However, in order to achieve these performance improvements, computer hardware has

also grown significantly more complex, with increasing disparities between the fundamental

capabilities of the CPU and the abilities of the memory and other busses (i.e. disk) to move

the data through the memory hierarchy at a pace that allows the CPU to perform up to its

capabilities. This period has also seen the coming-of-age of parallel computing, with dual-

processor desktop systems being routinely available, and ownership of larger Beowulf clusters

or more highly-integrated parallel systems easily accessible to many research groups. Packages

such as NWChem [39, 40] and MPQC [41–43] have been developed largely from scratch for

large-scale parallel computing environments, and many other electronic structure packages
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have been incrementally parallelized, by transformation or rewriting of existing sequential code

resulting in parallel-capable code with a wide range of parallel scalability.

The complexity of modern software development in this field can be seen in a simple com-

parison of the number of terms in various coupled cluster methods and the number of source

lines of code (SLOCs) [44] required to implement them. While the precise numbers will, of

course, vary with the details of the implementation, Table 1 illustrates the comparison for one

particular case. The fact that roughly 300 lines of code are required per term, and that the

number rises with the level of excitation included in the method, is an indication of the size

of the semantic gap between the way quantum chemists think about their methods and what

is required to implement them with current general-purpose programming languages, such as

Fortran, C, or C++. Serious attempts to produce implementations with maximum sequential

performance across a broad range of computer platforms would increase the ratio, and highly

scalable parallelization would increase it even more, to the extent of requiring multiple imple-

mentations of some parts of the code to achieve high performance on all platforms. As a conse-

quence, researchers are typically forced to choose between exploration of new methodological

ideas and the creation of robust, high-performance implementations which are applicable to a

wide range of chemical problems. Moreover, even when focused in this manner, new develop-

ments often require months of effort and still result in codes with lower levels of capability or

performance than might be desired.

To help address this problem, the electronic structure community has often turned to more

advanced methods to accelerate the task of implementing the desired software, including the

use of automatic code generation tools. Such tools are designed either to generate code for

a specific method or problem, or to provide a “high-level language” which is generally much
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Table 1: Number of terms in various CC methods, the number of source lines of code (SLOC)
required to implement them, and the ratio of the two. SLOC counts only code for evaluating the
basic tensor contraction expressions and does not include integral evaluation or other necessary
code. Counts are for code generated by the prototype Tensor Contraction Engine [45, 46], and
are courtesy of So Hirata [47].

Method Terms SLOC SLOC/Term
CCD 11 3,209 292
CCSD 48 13,213 275
CCSDT 102 33,932 333
CCSDTQ 183 79,901 437

smaller than a general-purpose language and tailored for a class of methods or problems. His-

torically, these approaches have focused primarily on the “productivity” side of the complexity

problem described above – the rate at which methods can be implemented – though a few have

been aimed at enhancing performance, usually of a very particular problem or algorithm. In

this paper, we offer an overview of an ongoing effort to develop a suite of tools, known as the

Tensor Contraction Engine (TCE), intended to simultaneously address both productivity and

performance for a broad range of many-body methods.

2 Background: Advanced Approaches to Software Develop-

ment for Electronic Structure Theory

The most common approach to increasing productivity in scientific software development is

the abstraction of common code motifs into libraries which can be easily reused. Among the

most familiar examples of this approach in electronic structure software are probably numerical

libraries, such as the BLAS [48] for basic vector and matrix operations, and LAPACK [49, 50]
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for linear solvers, eigensolvers, and other basic linear algebra tools. The nature of high-end

electronic structure methods is such that there are significant similarities in the code required

to implement one method or another, both in terms of overall structure and specific content.

However the specific differences between methods can make it very challenging to directly

reuse code from one to another. For example, in the development of many-body methods, the

most easily recognized motif is probably the contraction of tensors (integrals, excitation ampli-

tudes, etc.) to form other tensors (or, sometimes, scalars). However efficient implementations

of tensor contractions will vary significantly depending on the details of how the tensors are

stored, which indices are contracted, and even the size of the space covered by each index. As

a result, attempts to abstract tensor contractions into libraries tend to be either very general and

rather inefficient, or to provide many distinct routines for different types of contractions, and

thus have too little of the desired abstraction.

Generalized algorithms that work across a family of methods are a higher-level alternative

to direct reuse of code for simplifying the development of complex quantum chemical soft-

ware. This approach involves the development of a computational formalism that allows an

entire family of related methods to be expressed and evaluated within a single body of code.

For example, formulations allowing the evaluation of properties to arbitrary orders have been

developed by Dykstra and Jaisen at the SCF level [51, 52], and Piecuch and coworkers for

coupled cluster linear response theory [53, 54]. Full-CI codes have often been adapted to pro-

vide generalized algorithms for families of other methods. Arbitrary-order perturbation theory

(i.e. MBPT-n) has been demonstrated by Knowles and Handy [55, 56]. Coupled cluster meth-

ods with arbitrary levels of excitation have been implemented by Hirata [57], Kàllay [58],

and Olsen [59]. Similar capabilities have been demonstrated for Equation of Motion coupled
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cluster (EOMCC) theories by Hirata et al. [60,61] and Hald and coworkers [62], as well as per-

turbative corrections to EOMCC [63]. Recently Kallay has used string based methods that are

used widely in CI methods (e.g. [64]) to generate CC energies of arbitrary order, using a single

general procedure to effect the tensor contractions. In this implementation the antisymmetry

of input and intermediate tensors is treated in an efficient way, and Kallay also introduced an

elegant factorization scheme for CC based methods [65], such that the scaling of the method

is similar to hand-coded implementations. The string based algorithm has been used subse-

quently to implement active space coupled cluster methods [66], and analytical gradients [67]

and Hessians [68] for CC methods of arbitrary excitation level.

Another approach to simplifying software development is automatic code generation. The

code generation system embodies a formalized understanding of how to write the code for a

given class of methods, capturing the similarities among the different methods, while allowing

the specifics to be tailored to each method. In this case, the “reuse” is not at the level of the

code itself, but rather the conceptual level above that. Code generation may be controlled by

modifying the generator itself, through simple configuration parameters provided to the tool,

or by a formally-defined language (with a grammar and parser), which is often referred to as

a domain-specific language (in this case the scientific domain of electronic structure theory)

or a high-level language, which should be contrasted with a general-purpose programming

language like C or Fortran. Janssen and Schaefer [69], Li and Paldus [70], and Nooijen and

coworkers [71, 72] are among the published examples of the use of automatic code generation

in the context of various coupled cluster methods. Recently, So Hirata created a prototype

version of the Tensor Contraction Engine that accomplished the automated implementation of

scalable parallel versions of CI, MBPT and CC methods up to quadruple excitation levels [45],
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and Equation of Motion Coupled Cluster energies and properties [46]. While in these examples

the primary utility of the code-generation approach is to simplify and accelerate the implemen-

tation of complex many-body methods, code-generation approaches can also be applied to

improving performance. For example Fermann and Valeev’s Libint [73] uses automatic code

generation to product highly-optimized routines for integral evaluation analogous to the way

ATLAS [74, 75] generates tuned implementations of the BLAS libraries. Code-generation ap-

proaches have some of the same limitations as generalized algorithms. The breadth of methods

to which code generation can be applied tends not to be as limited as for generalized algo-

rithms, but depends strongly on the level of effort put into the generality of the code generation

tool. Performance of the generated code also strongly depends on the effort put into the gener-

ator. On the other hand, automatic code generation tools offer a number of unique advantages

as an approach for complex large-scale electronic structure codes:

• New programming models, performance-related changes, and other implementation de-

tails can be applied to a wide range of methods by modifying the generator and regener-

ating the various methods of interest.

• It may be practical to generate implementations tailored to specific computer platforms,

or to particular chemical problems in order to obtain better performance or better manage

computational resources.

• Code generation driven by a high-level domain-specific language provides the user an

opportunity to express the calculation to be performed in a form that is much closer to

the way the researcher derived the equations than is possible with hand implementations

in a traditional general-purpose programming language.
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Figure 1: A general schematic representa-
tion of the architecture of the Tensor Con-
traction Engine software tools (both proto-
type and optimizing). “Tensor Expressions”
and “Generated Code” boxes represent the
inputs and outputs of the TCE tools. Dashed-
line boxes represent one or more optimiza-
tion modules which act on the simple expres-
sion tree or abstract syntax tree representa-
tions used within the TCE.

TCE Language
Parser

Simple Expression Tree
Optimizations

Loop Fuser

Abstract Syntax Tree
Optimizations

Code Generator

Generated Code

Tensor Expressions

Simple Code
Generator

Abstract Syntax Tree
Generator

To date, applications of automatic code-generation ideas in electronic structure theory, and

indeed in other areas of computational science as well, have focused essentially on either pro-

ductivity (increasing the rate at which software can be created) or the performance of the

resulting software. However there is no limitation intrinsic to the approach that prevents both

goals from being pursued simultaneously. The Tensor Contraction Engine (TCE) is a unique

effort to bring together the productivity and performance benefits of automatic code generation

to quickly and easily produce high-performance parallel implementations of a broad spectrum

of many-body electronic structure methods. The project team brings together a group of quan-

tum chemists and computer scientists and treats the problem very much like the development

of an optimizing compiler. In the following sections, we describe overall approach and archi-

tecture of the TCE and provide some specific examples of the benefits of this approach in terms

of flexibility, productivity, and performance.
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3 The Tensor Contraction Engine

The Tensor Contraction Engine is structured along the same basic lines as a compiler for a

general-purpose language, such as Fortran: an input language is parsed into an internal rep-

resentation, that internal representation is processed to transform and optimize it, and finally

“executable” code is generated. In the case of the TCE, the input language is a high-level,

domain-specific language which allows the user to express the equations to be implemented in

a form natural to a quantum chemist, based on tensor expressions. The use of a high-level input

language provides the TCE with a view of the problem in a natural form of expression, before it

is translated to satisfy the constraints of a general-purpose language, such as Fortran. Based on

this high-level view, the TCE can perform optimizations that are not possible once the desired

operations have been translated into a general-purpose language. These optimizations can rig-

orously and systematically explore the space of possible transformations, compared to the far

more empirical approach typically taken by software developers implementing such codes by

hand. Moreover, it is possible to tailor the TCE’s processing and optimizations to the resources

and performance characteristics of each hardware platform on which the generated code will

run, producing a different implementation tuned to each target system. In fact, the generated

code can even be tailored to specific chemical problems, which may be useful for extremely

large or complex calculations.

Fig. 1 illustrates the overall architecture of the TCE, and the various components shown in

the diagram are described in more detail below.
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3.1 Tensor Expressions and the TCE Language Parser

In order to illustrate the operation of the first two boxes in Fig. 1, consider the basic tensor

expression

Sabij =
∑

cefkl

AacikBbeflCdfjkDcdel. (1)

This equation might be rendered in the TCE’s input language as shown in Listing 1. All

indices appearing in TCE inputs are declared as being associated with a particular range of

values (lines 4–5). Ranges must be declared with a size (lines 1–2) to allow the compiler to

compute the cost and resource requirements of each expression during the optimizations. These

sizes amount to upper bounds – the generated code will work up to the indicated size, but may

fail beyond it due to resource exhaustion. TCE procedures are named and declare both their

input and output data (lines 9–10). Tensor expressions are written as explicit summations in

notation reminiscent of that used by Mathematica [76] (lines 12–13). The mlimit declaration

indicates the amount of main memory available on the target system. The TCE input language

also allows external (i.e. not generated by the TCE) functions to be declared and used in tensor

expressions, for example to obtain integrals.

The TCE input is parsed and converted into an expression tree, in which the tensor contrac-

tion expressions are represented as a binary tree, with nodes for each operator or summation in

the expression and tensor elements (i.e. A[a,c,i,k]) as the leaves. This is the first of two

“internal representations” used within the TCE, which can be transformed in systematic ways

by various optimizations.
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1 range V = 3000;
2 range O = 100;
3

4 index a,b,c,d,e,f : V;
5 index i,j,k,l : O;
6

7 mlimit = 100GB;
8

9 procedure P(in A[V,V,O,O], in B[V,V,V,O], in C[V,V,O,O], in D[V,V,V,O],
10 out S[V,V,O,O])=
11 begin
12 S[a,b,i,j] == sum[ A[a,c,i,k] * B[b,e,f,l] * C[d,f,j,k] * D[c,d,e,l],
13 {c,e,f,k,l}];
14 end

Listing 1: TCE input corresponding to Eq. 1.

3.2 Expression Tree Optimizations and Loop Fusion

Operation minimization applies transformations based on the algebraic properties of commu-

tativity and associativity of addition and multiplication, and the distributivity of multiplication

over addition in order to obtain an equivalent form with the minimal scaling [77,78]. For exam-

ple, the four-fold contraction of Eq. 1, which is O(o4v5) as written, would be transformed to the

sequence of pairwise contractions costing O(o2v4 + o3v3) shown in Fig. 2a. This optimization

would also convert the usual O(N 8) form in which a four-index integral transformation is typ-

ically written (as a single contraction involving five factors) into the O(N 5) form in which it is

usually implemented (a sequence of pairwise contractions). This optimization operates on the

expression tree representation of the TCE input, and is represented by the upper dashed box in

Fig. 1. At present, these transformations can be applied to all terms within a single statement.

We are working to generalize this optimization so that it can work across multiple statements,

which will allow recognization of common subexpressions and more effective factorization.

Because the operation minimization phase tends to introduce very large intermediate ten-

sors which may exceed the available memory, loop fusion is used next to minimize the space
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I1bcdf =

∑

el

Bbefl × Dcdel

I2bcjk =

∑

df

I1bcdf × Cdfjk

Sabij =

∑

ck

I2bcjk × Aacik

(a) Formula sequence

I1=0; I2=0; S=0;
for b, c, d, e, f, l
[

I1bcdf += Bbefl Dcdel
for b, c, d, f, j, k
[

I2bcjk += I1bcdf Cdfjk
for a, b, c, i, j, k
[

Sabij += I2bcjk Aacik

(b) Direct implementation (unfused
code)

S = 0;
for b, c
























I1f = 0; I2f = 0;
for d, f








for e, l
[

I1f += Bbefl Dcdel
for j, k
[

I2fjk += I1f Cdfjk
for a, i, j, k
[

Sabij += I2fjk Aacik

(c) Memory-reduced implementation
(fused)

Figure 2: Example illustrating use of loop fusion for memory reduction based on the tensor
contraction in Eq. 1.

required for temporaries (also known as memory minimization) [79]. This technique selec-

tively moves loops for the generation of temporary tensors closer to where they are used, so

that the temporary can be generated and consumed in subsections instead of having to evalu-

ate the entire tensor, as illustrated in Fig. 2 (notice that in the fused code I1f is a scalar and

I2f is rank-2 whereas in the unfused version, both are rank-4). Normally, the loop-fusion

optimization would be applied so as to preserve the overall computational cost determined in

the operation minimization step, but more aggressive fusion is also possible, with an increase

in cost (effectively undoing some or all of the operation minimization). This may be useful,

for example, if an important calculation is so large (or resources so constrained) that it can-

not fit in the available memory and disk storage, and the user is willing to pay the additional

computational cost.

Because loop fusion can interact strongly with subsequent optimizations, the loop fuser

does not actually try to select the “best” set of loop fusions, but rather annotates the expression

tree with information about a set of the highest-ranking fusion options to allow for flexibility

later in the optimization process.
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3.3 Abstract Syntax Tree Generation and Optimizations

The expression tree used in the upper part of Fig. 1 is a very simple representation of the desired

computations which allows only limited opportunities for optimization. Further optimization

requires a more detailed representation in which the individual loops, I/O operations, and other

features that must appear in the final generated code can be represented. This representation,

known in computer science as an abstract syntax tree (AST) [80], is generated by the TCE

from the output of the loop fusion operation.

The flexibility of the AST allows a much broader range of optimizations (represented col-

lectively as the lower dashed box in Fig. 1). Similar representations are used within compilers

for general-purpose languages, and there are many similar features in the types of optimiza-

tions available in general-purpose compilers and those being used in the TCE. An important

difference, however, is that TCE optimizations can take advantage of the fact that the problem

space is limited to electronic structure methods to perform transformations that would not be

applicable in a more general context. At present, the primary optimizations available at this

stage of the TCE’s execution are:

• Data distribution and partitioning: In order to generate efficient parallel code, atten-

tion must be paid to the details of how the data is distributed across the machine. This

component seeks distributions of the data that will minimize the parallel communica-

tion required to evaluate the tensor equations. Since the data distribution pattern affects

the memory usage on the parallel machine, this component is closely coupled with the

memory-minimization component [81].

• Space-time transformation: Depending on the method and the size of the chemical
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problem, the earlier loop-fusion optimization may be able to reduce memory usage so

that the entire computation fits into main memory, memory plus available disk space,

or it may not even be able to fit the calculation into the available storage at all. In the

last case, the calculation cannot be performed unless it is possible to trade storage for

recomputation of certain quantities; if the calculation requires the use of disk storage,

there may be performance advantages to recomputation instead of storing on disk. The

space-time transformation module systematically explores opportunities to trade storage

space for recomputation to either fit the problem into available storage, or to improve

performance. In the former case, if no satisfactory transformation is found, feedback

is provided to the Memory Minimization module, causing it to seek a different solution

through more aggressive loop fusion [82]. If the space-time transformation module is

successful in bringing down the memory requirement below the disk capacity, the data-

locality optimization module is invoked.

• Data-locality optimization: On modern computer architectures, the idea of blocking

(also known as tiling) a calculation to make effective use of the CPU’s cache memory

is widely used to improve performance. Such optimizations are based on maximizing

the locality of the computation, so that data can be brought into cache and reused as

much as possible before it is evicted. For a disk-based calculation, the computer’s main

memory can be treated as the “cache” and the same ideas can be applied to optimizing

the movement of data between disk and main memory. The data-locality optimization

module determines the optimum tile sizes to obtain the best overall performance from

the memory hierarchy [83, 84].
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3.4 Code Generation

Once all desired transformations and optimizations are complete, the output code must be

generated. In the case of a general-purpose compiler this would be binary object code, but for

simplicity, the TCE produces its output in a general purpose programming language (we have

arbitrarily chosen Fortran). The code-generation phase of the TCE is depicted in two places

in Fig. 1: the Code Generator at the bottom of the diagram, and the Simple Code Generator

near the middle. The Simple Code Generator represents the option to skip the more complex

optimizations which act on the detailed abstract syntax tree representation and generate code

directly from the expression tree representation. This option reflects the way the TCE has been

developed. The longer path, including all possible opportunities for optimization represents

the structure of the “optimizing TCE” or o-TCE, while the shorter path represents the structure

of the “prototype TCE” or p-TCE.

The optimizations of the o-TCE acting on the detailed abstract syntax tree representation

are the most complex aspect of the development of the TCE – many of the optimizations

currently implemented were newly developed as part of this project. The p-TCE, initially

developed by So Hirata [45, 46], provides a simpler environment in which to explore certain

aspects of the code generation problem, though of course it lacks much of the optimization

capability of the o-TCE. In order for the o-TCE framework to be as extensible as possible, both

within the area of many-body methods, and in the longer term beyond it, we are striving to

carefully distinguish the origins of various code generation aspects and optimizations possible

in many-body methods as arising from the mathematical properties of tensors, the physics of

fermionic systems, or the chemical or physical nature of the system being studied, for example.
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In this respect, the p-TCE has proven very useful in allowing us to systematically capture and

explore aspects of automatic code generation for many different electronic structure methods

and implementation models without having to worry about the complexity of having fully

general AST-based optimizations that will work universally.

For either code-generation module, the code being produced must be targeted to a particular

environment. This includes how it is interfaced with an existing electronic structure package

to obtain the integrals and other inputs required, as well as the specific parallel programming

model. At present, we have chosen to focus on NWChem [39, 40] as the electronic structure

package (though code generated by the p-TCE has also been interfaced with UTChem [85,86]).

For parallel computing, we are using the Global Array Toolkit [87–89], which is widely used

in parallel electronic structure packages [39,90–94]. Since at present, the TCE is only capable

of evaluating tensor contraction expressions themselves, the generated code must be wrapped

up into a (hand-written) driver to handle the overall sequencing and iteration of the tensor

expressions, and we also assume that various numerical and other libraries are available (such

as the BLAS).

An important feature of this approach is the flexibility provided by the code-generation

process. Retargeting the code to interface with a different electronic structure package, parallel

programming model, or other variations in the environment is primarily a matter of modifying

the code-generation portion of the TCE (though in some cases some optimizations may also

need to change). Once the modifications are made to the code generator, an entire range of

methods can be generated targeting the new environment. The resulting changes often suffuse

the entire code, so hand implementations would require significant modification for each and

every method separately. In the following section, we present an example which takes advan-
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tage of the flexibility of the code generation approach, as well as examples of some of the other

optimizations implemented in the TCE.

4 Examples of TCE Components in Operation

In order to provide further insight into the operation and capabilities of the TCE, in this section

we present examples of various modules of the TCE in operation: our algorithm for operation

minimization, which is providing results very close to the best known manual CCSD imple-

mentation; the effect of loop fusion and data locality optimizations on an out-of-core four-index

transformation; and finally, an example of a new parallel CCSD(T) algorithm implemented us-

ing the TCE.

4.1 The Operation-Minimization Optimization

As discussed in the previous section, transforming the input equations into a form that has the

appropriate computational scaling, often known as operation minimization or strength reduc-

tion, is one of the most critical optimizations in the TCE. When a method is being implemented

by hand, these kinds of transformations are generally made on a largely empirical basis, in-

formed by the developers experience, familiarity with the literature, etc., and tend to evolve

and improve slowly over time. In an automatic code-generation environment like the TCE,

the power of the computer can be used to perform a much more rigorous (and perhaps even a

complete) search of the alternatives for operation minimization or other kinds of optimizations

in order to find the best one. Moreover, optimizations in the TCE can easily be applied to the

whole range of methods for which the TCE can produce code, while in traditional software
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development, each method’s implementation would have to be hand optimized separately.

Operation minimization acts on the expression-tree representation, which is a straightfor-

ward translation of the input equations into a binary tree of variables (i.e. tensor elements) and

mathematical operations (i.e. multiplication, addition, summation). The input equations can

be transformed into equivalent expressions through algebraic manipulations based on proper-

ties such as commutativity, distributivity, associativity, etc. Each variant would give rise to a

new expression tree which differs from the original input form only with respect to the specific

algebraic manipulations that have been performed on it. Each tree also has a unique cost as-

sociated with it based on the number and types of operations to be performed. (For example,

A × B + A × C costs 4N 3 + N2 operations if all matrices are N × N , while A × (B + C)

costs 2N 3 + N2.) The task of operation minimization is to search among all these equivalent

expression trees to find the one with the minimum cost.

Unfortunately, the number of alternative representations grows very quickly with the com-

plexity of the input equation, and the optimization is NP-complete [95], meaning that the

known algorithms to solve it are exponential in cost, making it infeasible in general to per-

form an exhaustive search for the minimum. Instead, we use a heuristic algorithm to search for

a solution approximating the global-minimum operation cost.

To understand the algorithm, consider each of the alternative expression trees above as a

single node in a larger graph. Adjacent nodes differ from each other by a single algebraic

transformation. Each node has a number of neighbors corresponding to every possible alge-

braic transformation that can be applied to every element of the tree. A simple search strategy

would be to examine all the immediate neighbors of the starting node (i.e. those that differ

by exactly one algebraic transformation somewhere in the expression tree) and choose the one
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with the least cost. The procedure is repeated at the new node, resulting in a direct-descent

algorithm. The direct descent algorithm will find a local minimum in the graph, but there is no

guarantee of finding the global minimum in this way. An improvement on this algorithm is to

perform a number of trials in which the first (or first several) step is taken at random and then

direct descent is used from there to find a local minimum. The final result of the algorithm is

the minimum over the local minima found in each trial.

Preliminary results of applying these search strategies to the CCSD T2 equations [96, 97]

are shown in Table 2. For the “random + descent” search algorithm, we perform 100 trials

consisting of a single random step from the input equations followed by direct descent to a local

minimum and taking the lowest result from all trials. As we can see, both search algorithms

obtain results that are significantly better than the original input form, and the random + descent

algorithm obtains a slightly lower coefficient for the o3v2 term. Comparing the search results

with the best known manual CCSD formulation by Stanton and coworkers [97], we see that N 6

terms match. In the N 5 terms, the search results are fairly close to those of Stanton et al., but

somewhat higher. We consider these preliminary results to be very positive, especially when

considering they were obtained with a completely automatic operation-minimization algorithm

which uses purely algebraic properties, without chemistry-specific information of any kind.

Moreover, the manual result we are comparing with did not appear until fully nine years after

the first implementation of the CCSD method appeared [96].

We are now exploring the use of this approach to operation minimization for CC meth-

ods with higher excitations, where much less effort has been expended to date in manually

minimizing the operation counts. We are also working to enhance the optimization algorithm

itself. Currently, it operates across all terms in a single statement, but ultimately it will be able

20



Table 2: Comparison of the costs of various forms of the CCSD T2 equation. The original input
expressions (first line) served as the starting point for the direct-descent and random + descent
optimization algorithms described in the text. These results are compared with the best known
manual formulation of the equations, by Stanton et al. [97]. o and v are the size of the occupied
and virtual orbital spaces, respectively, with o + v = N . Only the leading terms (N 6 and N 5)
are shown; N 4 and smaller terms are neglected.

Equations N 6 N5

Original input 1
4
o2v4 + 15

2
o3v3 + 11

2
o4v2 + ov4 + 19

2
o2v3 + 49

2
o3v2 + 7o4v

TCE direct descent 1
4
o2v4 + 4o3v3 + 1

2
o4v2 + 2ov4 + 8o2v3 + 9o3v2 + 3o4v

TCE random + descent 1
4
o2v4 + 4o3v3 + 1

2
o4v2 + 2ov4 + 8o2v3 + 8o3v2 + 3o4v

Stanton et al. 1
4
o2v4 + 4o3v3 + 1

2
o4v2 + ov4 + 6o2v3 + 10o3v2 + o4v

to work on multiple statements to optimize an entire TCE procedure, or even multiple proce-

dures, adding the capability to recognize and take advantage of common subexpressions across

a set of equations. We are also exploring more exhaustive search strategies such as simulated

annealing or genetic algorithms.

4.2 Loop-Fusion and Tiling Optimizations for the Four-Index Transfor-

mation

As an example to illustrate the impact of the loop-fusion and optimized tiling transformations

being implemented in the TCE, we consider the AO-to-MO integral transformation (virtual

orbitals only).1

B(a, b, c, d) =
∑

µ,ν,λ,σ

C(σ, d)C(λ, c)C(ν, b)C(µ, a)A(µ, ν, λ, σ)

1Since spatial and permutational symmetry are not yet modeled in the o-TCE, the data presented here is for
fully dense tensors, but the optimization approach is expected to be similarly effective for the computations that
exploit symmetry.
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where indices a–d denote virtual orbitals and µ–σ denote the full orbital space.

The operation-minimal way of computing B would be through the use of four steps, with

temporary intermediate tensors I1, I2, and I3, as follows:

I1(a, ν, λ, σ) =
∑

µ

C(µ, a)A(µ, ν, λ, σ)

I2(a, b, λ, σ) =
∑

ν

C(ν, b)I1(a, ν, λ, σ)

I3(a, b, c, σ) =
∑

λ

C(r, c)I2(a, b, λ, σ)

B(a, b, c, d) =
∑

σ

C(s, d)I3(a, b, c, σ)

If the integrals are too large to fit in memory, tiling of the loops will be required, so that the

tensors are processed in blocks that can fit within memory. A straightforward way of doing this

is to directly tile the loops corresponding to each of the four steps, using uniform tile sizes on

all dimensions. Thus, the loops for the first step would be tiled with the same tile size t along

all indices µ, ν, λ, σ, and a. Due to the rank-4 tensors, the maximum tile size is limited to the

order of the fourth root of memory size. Tile sizes may also be optimized individually [98,99].

The overhead of disk I/O can be reduced by using loop fusion, so that the ranks of some

of the intermediate tensors are reduced, allowing them to be completely memory resident to

avoid disk I/O (see Fig. 2, Section 3.2, and [98, 99]). While it is impossible to perform loop

fusions to reduce the ranks of all three temporaries simultaneously, there are a number of ways

of using loop fusion to reduce the ranks of two of the three intermediates.

In Table 3 we compare timings for three different implementations of this four-index trans-

formation:
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Table 3: Total disk I/O and execution times for code generated with the benefit of various
optimizations, as described in the text. Results were obtained on a 900 MHz Itanium 2 system
with 4 GB of memory (denoted M below), for 140 virtual orbitals and 150 AO orbitals.

Optimizations Included Total Disk I/O Total Execution
and Omitted I/O time (s) time (s)

No Fusion, Tile size = 4

√

M
3

1241 1957
No Fusion, Optimized Tiling 748 1262
Fusion + Optimized Tiling 248 955

1. No Fusion, Simple Tiling: Neither loop-fusion nor tile-size optimization is enabled;

equi-sized tiles along all dimensions are used, based on the 4th root of the memory size.

2. No Fusion, Optimized Tiling: No loop fusion is used (i.e. all intermediates I1, I2, and

I3 are fully produced and written out to disk and then read back to be consumed), but

the o-TCE tiling optimization is enabled, so that different combinations of tile sizes are

explored and the best chosen.

3. Fusion + Optimized Tiling: The o-TCE loop-fusion and tiling optimizations are used to

search amongst a large space of loop structures corresponding to different combinations

of loop fusion and tile sizes.

It can be seen that the combined use of fusion and tiling optimizations results in code that

has 80% less disk I/O than the version with the simple tiling, and a 66% reduction in total

execution time.
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4.3 Code Generation for a Loop-Fused Replicated-Data Parallel CCSD(T)

Implementation

A long-term goal of the TCE project is, given an accurate performance model for virtually

any platform, to be able to generate near-optimal code – automatically taking into account the

processor and network performance, memory and disk resources and other features. However

since this is not yet possible, we have taken advantage of the code-generation capabilities of the

TCE to produce a CCSD(T) [100] implementation designed for the capabilities of modestly-

sized, low-cost commodity Beowulf cluster computers which are now widely accessible, even

in the individual laboratories of many computational chemists. In this section, we outline our

on-going work in this area.

CCSD(T) has become a “workhorse” method of modern quantum chemistry because it

provides a relatively low-cost way of introducing some triple-excitation effects based on a

converged CCSD wavefunction. The development of parallel algorithms in which the data (t–

amplitudes, integrals, etc.) are fully distributed across the system is extremely complex and

finding a highly scalable distributed-data parallel formulation with the TCE is still some ways

off. Nevertheless, it would be useful to be able to speed up such calculations using widely

available commodity-cluster systems. By replicating the key data across all processes of the

parallel computer, we can eliminate much of the complex data communications that would be

required for a fully distributed algorithm. Instead we have a single, simple communication

phase in each CCSD iteration in which partial contributions to the t–amplitude residuals are

summed and the result redistributed to all processes. Loop-fusion techniques are used to insure

that the CCSD iteration can take place without the need for additional communication of in-
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for k < l, i < j
[

I2(k,l,i,j) = sum (c<d) v(k,l,c,d) t(c,d,i,j)
for k,b, i<j
[

I1(k,b,i,j) = sum (l) I2(k,l,i,j)*t(b,l) + v(k,b,i,j)
for a<b,i<j
[

R(a,b,i,j) = sum (k) I1(k,b,i,j) * t(a,k)

Figure 3: Pseudocode for a simple implementation of Eq. 2. I1 and I2 denote intermediate
quantities.

termediates. The code for such a replicated-data algorithm is straightforward to generate using

the TCE, and affords the opportunity to take advantage of modest numbers of CPUs to speed

up calculations.

To illustrate our approach, consider a representative term from the CCSD equations,

Rab
ij =

[

V cd
kl T cd

ij T b
l + V kb

ij

]

T a
k (2)

in which a contribution to the residual for the double excitation amplitudes, Rab
ij is computed

from integrals V pa
ij , and amplitudes T ab

ij and T a
i , where i . . . l denote occupied orbitals, and

a . . . d virtual orbitals.

In a straightforward implementation, intermediate terms in this equation would be calcu-

lated in their entirety and used as inputs to the next step of the calculation. In pseudocode, the

typical implementation might look like Figure 3.

However such an implementation is not attractive in a replicated-data parallel environment.

Each process would compute contributions to the intermediates that would need to be summed

up and redistributed to all processes before the next step of the algorithm could occur. This

would significantly increase the amount and frequency of communication and synchronization.

However we observe that in the term above, there is a common index k in all summations.
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for ktile




















assign task to next available processor
for l, i < j
[

I2(l,i,j; k) = sum (c<d) v(k; l,c,d)t(c,d,i,j)
for b, i<j
[

I1(b,i,j; k) = sum(l) I2(l,i,j; k)*t(b,l) + v(b,i,j; k)
for a<b,i<j
[

R(a,b,i,j) += sum(kwithintile) I1(b,i,j; k) * t(a; k)

Figure 4: Pseudocode for a perfectly fused implementation of Eq. 2.

Taking advantage of the concept of loop fusion, introduced in Section 3.2, the k–loop can be

pulled to the outside, so that the intermediates I1 and I2 can essentially be treated as rank-

3 tensors for fixed k. If the k values are distributed across the parallel processes, then each

process can compute the intermediates entirely locally, without any need for communication,

as shown in Figure 4. In this representation, we separate k from the other indices with a

semicolon (“;”) as a reminder that this index is fixed. The k–loop can be tiled according to the

available memory and disk resources, so that k is not a single index value, but a small range.

The likelihood of fitting the smaller, fused intermediates into memory is another significant

advantage of this approach.

Coupled-cluster-type equations can always be factored in such a way that it is possible to

perfectly fuse them and pull one or more indices to the outside of the entire term. A rule of

thumb to obtain a suitable factorization is that the first intermediate (I2 here) must always

include the Hamiltonian term v, and that the indices that can be pulled out are the summation

indices of the contraction of the final intermediate (I1 here) to update the residual (R).

It is worth noting that taking advantage of the loop-fusion opportunity requires giving up

the permutational symmetry k < l which was present in the original algorithm. Therefore, the

fused algorithm includes some redundant computation. This is a common trade-off, and one
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which we are working on including in the o-TCE, so that the choice to use the permutational

symmetry or take advantage of a loop fusion opportunity can be made based on the relative

costs of the two alternatives.

The parallelization strategy for this approach is already indicated in the pseudocode above.

The work is farmed out across the processors at the level of the k–loop, and each task can be

carried out local to the assigned process, without requiring communication. Using this par-

allelization strategy, it is possible, within a CCSD iteration, for each process to calculate its

contribution to the t–amplitude residuals in an entirely local fashion using the replicated in-

tegrals and amplitudes, and the processes need not be synchronized during this computation.

Once all local residual contributions are complete, they must be accumulated to form the com-

plete residual, and then distributed back to all processes.

To reduce the replicated storage required for integrals, we have chosen to implement the

terms involving integrals with four virtual orbital labels (referred to as the abcd term) in the

AO basis. This involves back-transforming the t–amplitudes from the MO to the AO basis (at

a cost of roughly o2v2N + o2vN2 operations for N AO basis functions), contracting with the

pre-computed AO integrals, and transforming the result back to the MO basis. This transfor-

mation may be carried out as a parallel operation or the computation may simply be carried

out redundantly local to each process. The parallel option tends to perform best with high-

performance network interconnects, while on systems with slow networks the redundant se-

quential algorithm gives better overall performance. A secondary benefit of using the AO basis

representation of the abcd term is that the resulting parallel tasks tend to be relatively small.

By performing this step after all of the MO-basis steps in the CCSD iteration, these small tasks

can be dynamically allocated to “even out” any load imbalance that may have occurred in the
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MO steps, which includes a small number of relatively large tasks.

The equations for the (T) correction can be summarized as:

T abc
ijk = P (i/jk)P (a/bc)

∑

m

T ab
imV cm

jk +
∑

e

T ae
ij V bc

ek

T̃ abc
ijk = P (i/jk)P (a/bc)T a

i V bc
jk

E [4] =
∑

abcijk

T abc
ijk T abc

ijk

Dabc
ijk

E [5] =
∑

abcijk

T abc
ijk T̃ abc

ijk

Dabc
ijk

Where P stands for permutation operator, e.g.:

P (i/jk)f(i, j, k) = f(i, j, k) − f(j, i, k) − f(k, j, i)

and D is the usual SCF energy denominator. The idea of loop fusion is used in practically all

implementations of the perturbative triples correction to avoid storage of 6-index quantities,

although it is usually not called by that name. As the indices ijk and abc occur in all terms,

perfect loop fusion is possible. These indices are taken as the outer loops, and for a given

batch of indices all contributions, including the various terms implied by the permutation op-

erators, are accumulated in memory. This results in an algorithm which does not require any

storage of T3 amplitudes, as all fragments of the intermediate quantities can be held in memory

and consumed immediately. In a replicated-data environment, the inputs to these equations

are available in their entirety on all processors, and parallelization is a straightforward mat-

ter and can be carried out without communication except for the final accumulation of energy

contributions from the individual processes.
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It should be clear that the loop-fused replicated-data parallel CCSD(T) algorithm is signif-

icantly different in structure from the straightforward implementation of the method. Imple-

menting our approach by hand would have required doing it from scratch rather than adapting

an existing code. One of the virtues of the TCE, however, is that the code generation is just

another module of the tool, and can be changed to target a different programming model and

can be used to generate implementations of any many-body method for which the model is

appropriate. We have made extensive use of the prototype TCE [45, 46] in implementing our

new approach. Minor modifications were required to the generated code in various places, and

the AO-basis abcd terms were hand-coded since support for generating AO-basis algorithms

in the TCE is still under development. The current implementation of the AO-basis abcd term

does not take advantage of molecular symmetry.

To illustrate this work, we present preliminary timing results for a CCSD(T) calculation on

ethylene run on two different Beowulf clusters with very different configurations. One is the

“Mpp2 (phase 2a)” system at the Molecular Science Computing Facility [101] at Pacific North-

west National Laboratory, and the other is the “watsci” cluster at the University of Waterloo.

Mpp2 was designed and configured to be used for large-scale parallel computing, while watsci

was intended primarily as a processor farm for sequential jobs. Their node configurations are

summarized in Table 4. The test case is the lowest cation state of the ethylene molecule using

the cc-pVTZ basis [102] and a UHF reference state, giving o = 8 (alpha spin) and v = 108

(beta spin). The initial calculations were performed using D2h point-group symmetry except

for the AO-basis abcd term. The CCSD calculation took 11 iterations to converge, and the cost

of the (T) correction is comparable to a single CCSD iteration (primarily due to the AO-based

implementation of the abcd term).
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Table 4: Cluster node configurations.

Cluster Mpp2 Watsci
Processor Intel Itanium 2 (IA-64) Intel Celeron (IA-32)
Clock Speed 1.5 GHz 2.0 GHz
CPUs per Node 2 1
Network Quadrics QsNet (Elan-3) 100 Mb Ethernet
Memory 8192 MB 256 MB
Local Disk Space 430 GB 10 GB

Table 5 shows timings and parallel speedups for this test case, broken down by the different

tasks performed by the code: the initial transformation of the AO integrals to the MO basis, the

iterative solution of the CCSD equations (times are presented for a single iteration), and finally,

the (T) correction. We ignore the SCF calculation required for the reference wavefunction for

the CCSD(T). Timings are broken down into phases which are characteristic of replicated-data

algorithms: work that is performed in parallel across all processes, work that is replicated and

performed redundantly on each process, and communications phases in which partial results

from each process are accumulated and the results broadcast back to all processes. On Mpp2,

the MO/AO transformations in the abcd term are performed using a parallel algorithm, while

on watsci, they are is replicated. Also, on the Mpp2 cluster, only 2500 MB of memory per

processor were actually used.

Looking at the results, we see that the scalability of the actual parallel work is very good in

all aspects of the calculation on Mpp2 (15 out of 16 processors) and somewhat lower on watsci

(10–13 processors out of 16). This portion of the effort is, in principle, perfectly parallel, so

that any reduction from full scalability is due to load imbalance. Because of the poor network

on watsci, the dynamic load balancing for the AO-abcd term was done at a very coarse grain,
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Table 5: CCSD(T) calculation using the cc-pVTZ basis set for the Ethylene molecule in D2h

symmetry. Wall time in seconds, speedup factor with respect to one processor in parenthesis.
For the Transformation and CCSD Iteration steps, timings are further broken down by the phase
of the computation.

Number of Processors
Algorithm Step 1 2 4 8 16

Mpp2 Cluster
Transformation 699.3 382.1 (1.8) 210.9 (3.3) 132.5 (5.3) 99.4 (7.0)

Replicated 4.5 4.7 (0.9) 4.8 (0.9) 4.7 (1.0) 5.0 (0.9)
Parallel 640.1 336.3 (1.9) 163.8 (3.9) 82.5 (7.8) 42.2 (15.2)
Communication 12.1 13.8 (0.9) 20.3 (0.7) 27.2 (0.6) 32.5 (0.6)

CCSD Iteration 83.5 42.1 (2.0) 21.9 (3.8) 12.0 (6.9) 7.6 (11.0)
Parallel 77.0 38.2 (2.0) 19.2 (4.0) 9.7 (7.9) 5.0 (15.5)
MO–AO (comm.) 6.0 3.4 (1.7) 2.2 (2.7) 1.7 (3.4) 1.8 (3.3)
Communication 0.4 0.5 (0.9) 0.5 (0.8) 0.6 (0.7) 0.8 (0.5)

(T) Correction 90.9 46.8 (1.9) 23.5 (3.9) 11.8 (7.7) 6.0 (15.1)

Overall CCSD(T) 1729 904.0 (1.9) 483.5 (3.6) 284.1 (6.1) 196.0 (8.8 )

Watsci Cluster
Transformation 1075 756.4 (1.4) 708.5 (1.5) 852.9 (1.3) 982.4 (1.1)

Replicated 16.7 15.8 (1.1) 16.2 (1.0) 16.6 (1.0) 17.1 (1.0)
Parallel 934.3 491.6 (1.9) 263.6 (3.5) 144.8 (6.5) 71.0 (13.2)
Communication 51.8 156.8 (0.3) 288.6 (0.2) 496.4 (0.1) 658.4 (0.1)

CCSD Iteration 246.7 156.8 (1.6) 84.4 (2.9) 50.5 (4.9) 33.2 (7.4)
Parallel 240.6 148.0 (1.6) 75.7 (3.2) 40.1 (6.0) 19.7 (12.2)
MO–AO (repl.) 5.5 5.7 (1.0) 5.4 (1.0) 5.1 (1.1) 5.1 (1.1)
Communication 0.7 3.1 (0.2) 3.4 (0.2) 5.3 (0.1) 8.4 (0.1)

(T) Correction 207.2 119.9 (1.7) 68.0 (3.1) 36.6 (5.7) 20.8 (10.0)

Overall CCSD(T) 4049 2679 (1.5) 1760 (2.3) 1515 (2.7) 1453 (2.8)
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which helps to explain the poorer results on that cluster. The replicated steps, by definition,

should not scale at all, and variations from a speedup of 1.0 are the result of variations in exter-

nal factors such as the activation of operating system daemons. The communication-intensive

steps actually show slow-downs in all cases. Although the data volume being communicated

in this calculation is not large (approximately 21 MB/process), the fact that all processors are

communicating simultaneously increases the likelihood of contention on the network. This is

particularly true for Ethernet, where only one node can be sending data at a time on a given

switch (all nodes on the watsci cluster are connected to a single switch). We are investigating

these results and the details of the all-to-all communication to look for opportunities to improve

the communication performance.

The overall results illustrate that although the parallel work itself scales very well, the poor

scaling of the communications phase, along with the non-scalable replicated work can strongly

impact the total performance. On Mpp2, the overall scaling is 8.8 out of 16 processors, while on

watsci it is only 2.8. We can see that on both systems, the four-index transformation eventually

dominates the overall calculation, even though it is only O(N 5) (while the triples correction is

O(N 7)). This is not an aspect of the calculation in which we have invested much effort so far,

and there is certainly much room for improvement here.

Since in this example, the triples correction is very close in cost to the CCSD iteration,

we also performed a series of calculations in C1 symmetry on Mpp2 to provide an example in

which the triples correction represents a much larger portion of the overall computation. These

results are shown in Table 6.

In this case, we observe much better overall scaling (80% parallel efficiency vs. 55% for

the with-symmetry calculation on Mpp2). The triples correction dominates the total time for
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Table 6: CCSD(T) calculation using the cc-pVTZ basis set for the Ethylene molecule in C1

symmetry on the Mpp2 cluster. Wall time in seconds, speedup factor with respect to four
processors in parenthesis. For Transformation and CCSD Iteration steps, timings are further
broken down by the phase of the computation.

Number of Processors
Algorithm Step 4 8 16
Transformation 94.1 (1.0) 83.5 (1.1) 90.0 (1.0)

Replicated 5.7 (1.0) 6.0 (0.9) 5.2 (1.1)
Parallel 36.1 (1.0) 19.0 (1.9) 11.6 (3.3)
Communication 30.4 (1.0) 38.5 (0.8) 52.3 (0.7)

CCSD Iteration 23.5 (1.0) 13.5 (1.7) 10.0 (2.4)
Parallel 20.2 (1.0) 10.2 (2.0) 6.1 (3.3)
MO–AO (comm.) 0.9 (1.0) 1.0 (1.0) 1.2 (0.8)
Communication 2.4 (1.0) 2.3 (1.0) 2.67 (0.9)

(T) Correction 1210 (1.0) 593.9 (2.0) 287.5 (4.2)

Overall CCSD(T) 1574 (1.0) 835.1 (1.9) 495.5 (3.2)

the calculation, and scales excellently.2

As a side note, it is interesting to observe that in this case, using molecular symmetry is not a

major performance gain in some parts of the calculation. The CCSD iteration time is essentially

unaffected, and the transformation slows down substantially when symmetry is used. The

likely cause of this is that with symmetry, many of the blocks in the matrix multiplication

used to implement these steps are too small to drive the processor to peak performance – the

lower overall operation count is offset by the fact that the processor cannot perform them as

efficiently. With appropriate performance models, we anticipate that this trade-off could be

evaluated in advance and the TCE-generated code could choose whether it was advantageous

2We attribute the “super-linear” speedup observed here (4.2 vs 4.0 ideal) to the fact that the speedup compu-
tation is referenced to the four-processor time (the smallest configuration on which the calculation could be run)
instead of the usual single-processor time.

33



to take advantage of symmetry or not.

In summary, we have taken advantage of the p-TCE’s code generation capabilities to im-

plement a new loop-fused replicated-data parallel CCSD(T) algorithm. Initial results indicate

that the approach performs reasonably well on cluster computers. Additional effort is clearly

needed to understand and improve the performance of the communication phases of the com-

putation, as well as the transformation.

In the longer term, we anticipate that this particular type of experimentation with the TCE

will become unnecessary. As has been mentioned several times, our ultimate goal with the

o-TCE is to be able to generate code that accommodates a very broad range of platforms

based on their performance characteristics rather than forcing the user to select the algorithm

to be used based primarily on intuition. The decision to use a fully distributed algorithm or a

replicated-data one, decisions about which loops to fuse, where to take advantage of geometric

and permutational symmetries, and other options can be evaluated automatically in order to

provide the user with the best performance for the target platform and target problem. While

this goal remains some ways off, the essential optimization and decision-making techniques

are known and many have been outlined in this paper.

5 Current Status and Future Plans

In its conception, the Tensor Contraction Engine is one of the most general and most complex

efforts in automatic code generation undertaken to date in the chemistry community. Good

progress has been made already, with the prototype TCE (p-TCE) capable of routine use and

having already been used to generate parallel implementations of more than 25 different elec-
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tronic structure methods, including CC, QCI, EOM-CC, and relativistic versions of many of

them, thanks to the efforts of So Hirata [45–47]. We conservatively estimate that these im-

plementations would have taken five years or more of effort to implement by hand, but they

were done with the TCE in little more than the time it took to transfer the equations to the

appropriate form. Many of these implementations are available in the latest versions of the

NWChem [39, 40] and UTChem [85, 86] packages.

The capabilities of the optimizing TCE (o-TCE) lag somewhat those of the p-TCE be-

cause of the additional complexities of desired optimization capabilities and the need to have a

rigorous and detailed understanding of how they interact with characteristics such as permuta-

tional, spin, and spatial symmetries inherent in the chemistry and physics of the problem. The

o-TCE is current capable of generating code for a broad range of methods and applying the

various optimizations discussed in Section 3. However incorporation of permutational, spin,

and spatial symmetries is presently underway. We also plan to revise the way the generated

code interfaces with the host electronic structure package in order to make it easier to hook

TCE-generated code to a broader range of host packages.

As has been mentioned, performance and parallel scalability of the generated code are cen-

tral to our conception of the TCE. The optimization capabilities of the o-TCE are constantly

improving as we gain more experience. The development of the tool has now progressed to

a point where we are beginning to seriously examine performance issues in greater depth. A

code generation-based environment like the TCE offers unprecedented benefits with respect to

delivering high-performance code. With appropriate performance models for the target com-

puter (accounting for memory-access costs and other factors), TCE optimizations can seek to

minimize the actual execution time of the generated code, rather than just minimizing simpler
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metrics such as the number of floating-point operations. Moreover, the TCE can predict what

the performance of the generated code should be, based on the performance model, so that

deviations from the expected performance can be flagged and used to refine the performance

model.

We plan to explore a broader range of parallel-programming models within the TCE, which

relates to both code-generation and performance issues. In the previous section we discussed

a parallel-programming model that was targeted for computers with large memory/disk re-

sources, but a poor parallel interconnect. Our long-term vision is a unified model that would

be able to generate code for a broad range of parallel computers based on the computer’s per-

formance model and resource information. Systems with large memory and poor interconnects

would naturally end up with TCE-generated implementations based on replicated data while

those with better interconnects might get partly- or fully-distributed algorithms. The size of

the chemical problem, also part of the input to the TCE, also plays a role. For example, the

TCE would be able to determine if the problem is too large for a replicated-data algorithm on

the target system and instead produce a partly or fully distributed implementation if necessary.

The richest opportunities lie in the optimizations. Most of the optimizations currently avail-

able in the TCE were developed specifically for this project, and new and improved optimiza-

tion algorithms are constantly being developed. There are also interesting research questions

around how multiple optimizations interact, and how the order in which optimizations are ap-

plied effects the final results.

Finally, we are interested in broadening the TCE as far as possible within electronic struc-

ture theory, including, for example, support for local correlation approaches, and introducing

the technology into other scientific domains. The recent renaissance of coupled-cluster meth-
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ods for nuclear structure theory [103, 104] has given us our first target, but we anticipate many

others as well. Optimizations and related technologies developed within the TCE can also be

adapted into more general environments. For example, the data-locality optimization for man-

aging out-of-core calculations could be introduced into a traditional Fortran compiler (with

appropriate language extensions) to provide a tool that would greatly simplify the writing of

general (not chemistry-specific) out-of-core algorithms [105].

6 Conclusions

We have described the Tensor Contraction Engine, a tool for the automatic generation of code

for a broad spectrum of many-body methods. The overall design of the TCE follows closely

the architecture of traditional optimizing compilers, and has been developed by a team of both

computational chemists and computer scientists working in close collaboration.

The TCE addresses a number of different needs within the high-end electronic structure

community. The nature of code generation itself, and the fact that it is driven by a high-level

language very similar to the way the equations are expressed when they are derived, allows a

wide variety of methods to be expressed and implemented quickly. In this sense, we anticipate

that the TCE will become a catalyst for new method development by making the process so

much simpler and quicker compared to hand coding.

The ability to automatically generate parallel implementations is valuable for expanding the

capabilities of researchers who want to tackle larger or more expensive problems, but who lack

experience with parallelization of chemistry software, or lack the time to do it by hand. For

many applications of this type, an extremely high-performance parallelization is not necessary
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to provide benefits to the user, and indeed this has already been observed in the methods already

implemented using the p-TCE, as mentioned in the previous section. Many of these methods

received their first-ever parallel implementation via the TCE.

Finally, we view the TCE as a tool for high-end computational chemistry, where in order to

solve the problems of interest, there is a need to extract the utmost performance from the wide

variety of architectures now available at the edge of high-performance parallel computing. As

we improve the code generation and optimization capabilities, we anticipate that it will become

possible to routinely generate code with the TCE that meets or exceeds the performance of

hand-coded implementations in most cases.

With some further effort, we anticipate that the TCE will be able to produce near-optimal

high-performance parallel code for a wide range of electronic structure methods in a fraction

of the time required for hand coding. We believe that the widespread availability and use

of tools of this kind will facilitate a shift of effort away from the complex and often tedious

programming challenges associated with advanced electronic structure methods and toward a

focus on development of the methods themselves and the chemical problems they can address.
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[58] Kàllay, M. and Surjàn, P., J. Chem. Phys. 113, 1359, 2000.

[59] Olsen, J., J. Chem. Phys. 113, 7140, 2000.

[60] Hirata, S., Nooijen, M., and Bartlett, R. J., Chem. Phys. Lett. 326, 255–262, 2000.

[61] Hirata, S., Nooijen, M., and Bartlett, R. J., Chem. Phys. Lett. 328, 459–468, 2000.

[62] Hald, K., Jorgensen, P., Olsen, J., and Jaszunski, M., J. Chem. Phys. 115, 617–679,

2001.

[63] Hirata, S., Nooijen, M., Grabowski, I., and Bartlett, R. J., J. Chem. Phys. 114, 3919–

3928, 2001.

[64] Duch, W., J. Phys. A 18, 3283–3307, 1985.
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[66] Kàllay, M., Szalay, P. G., and Surjàn, P. R., J. Chem. Phys. 117, 980–990, 2002.
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